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ACTIVITIES

This was the first half-year of the sparse, distributed memory project.
During that time, Kanerva worked on the task full time, and Raugh (RIACS
core) contributed significantly by making numerous contacts outside
RIACS and by being available to discuss all aspects of the work.
Progress was made in four areas: (1) background studies, (2) research
planning, (3) professional contacts, and (4) other research-related
activities.

1. BACKGROUND STUDIES

To determine the relation of the sparse, distributed memory
to other architectures, a broad review of the literature was made.
A variety of names is used for these architectures: associative
memories, parallel distributed processing (PDP) architectures,
connectionist models, and artificial neural nets. We call them PATTERN
MEMORIES because they work with large patterns of features (high-
dimensional vectors), and we call computers based on them PATTERN
COMPUTERS. A pattern is stored in a pattern memory by distributing
it over a large number of storage elements and by superimposing it over
other stored patterns, and a pattern is retrieved by mathematical or
statistical reconstruction from the distributed elements. An important
property of pattern memories is that their addressing need not be exact:
An approximate retrieval cue will initiate the retrieval of a stored
pattern.
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For purposes of comparison, three groups of pattern memories will
be distinguished according to the topology of their storage elements
(adjustable weights). A complete characterization of these memories
would include, in addition, a description of their decision elements
(threshold units) and of the rules for updating the memories.

GROUP 1. Of the many architectures, the sparse, distributed memory
is most like the cerebellar model of Marr and the Cerebellar Model
Arithmetic Computer (CMAC) of Albus. Common to them is structural
similarity to the random-access memory (RAM) of a computer, typified
by arbitrarily many addressable storage locations. These memories are
characterized by

’

nmXxn

adjustable weights, where m is the number of (n’ element) storage
locations and n’ the number of components in the output patterns
(output dimension). These memories are addressed by n-component input
patterns (input dimension = n), and any given read or write operation
involves but a small subset of the storage locations.

GROUP 2. The associative-memory models of Anderson, Hopfield,
Kohonen, Willshaw, and others form a second group. The models are
similar to one another in one significant respect, setting them apart
from the first group: The number of (n’ element) storage locations
equals the number of components in the input patterns. Therefore, the
capacity of these memories is tied to the size of the input (and output)
patterns, whereas in the first group it is not. Furthermore, any read
or write operation involves much or all of the memory. These memories
are characterized by

4

nxn

ad justable weights, where n and n’ are the input and output
dimensions, as above, and usually n = n’.

GROUP 3. The multilayer or hidden-unit models of Hinton, Huberman,
Kohonen, McClelland, Rumelhart, Sejnowski, and others form a third
group. A typical memory in this group is a cascade of two or more
memories of the second group. If the "hidden" intermediate layers have
pP. 4, T, ..., 2z components, in that order, the memory is characterized

by
nxp + pxXxq + gXr + ... + zZXDn

ad justable weights. The intermediate layers make it possible to vary
memory capacity independently of the sizes of the input and output
patterns (of n and n’). As with the memories of the second group,
a read or write operation tends to involve much (or all) of memory.
More complicated multilayer memories would have more complicated
interconnections, but their properties are not generally understood.
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GROUPS 1 AND 3. A memory of the first group can, in fact, be
realized by a two-layer memory of the third group, with the middle layer
consisting of m components. According to the description of Group 3,
such a memory has nxXm + mx n’ adjustable weights. When this
memory is simplified by fixing the first n x m weights, we get a
sparse, distributed memory of the first group with m x n’ adjustable
weights.

GROUPS 1, 2, AND 3. To summarize, memory capacity is independent
of the input and output dimensions in the first and third groups and
highly dependent in the second (single-layer) group. The memoTies
in the third group are more general than in the first, and therefore
possibly more powerful. However, the greater simplicity of the first
group pays off in speed of learning: Experiments indicate that it takes
at least 100 times as many trials to train memories of the third group
as it does to train those of the first. The sparse, distributed memory
belongs in the first group and therefore it learns rapidly and can be
made arbitrarily large without changing its input and output dimensions.
The memory requirements of several tasks were estimated and are
summarized in Table 1.

TABLE 1

Realizing Sparse, Distributed Memory in Different Kinds of Hardware
(Estimates)

Dimen- Number of Cycles

Hardware sion, locations, per Task

n m second
Dedicated 128 10, 000 .2-1 Demonstrate convergence
DEC 2060 properties of the memory
32-node Intel 128 50, 000 1-5 Simple learning by trial
iPSC and error
16K-processor 200 60, 000 50-200 Word parsing in compacted
Connection Machine text
Prototype 256 100, 600 10-100 Word parsing in compacted

text and possibly in speech

Present VLSI 1,000 100,000,000 1,000 Language understanding (?)
potential



2. RESEARCH PLANNING

Major effort went into preparing a research plan for the extensive
study of sparse, distributed memories and of systems based on them. The
plan calls for a three-year study of the architecture in collaboration
with Professor Michael Flynn at Stanford and Professor Terrence Smith at
UC Santa Barbara. According to this plan, the engineering design of the
memory would be studied at Stanford and a resulting hardware-prototype
memory would be placed at RIACS, the uses of the memory in controlling
a TV camera and a robot arm and a hand would be studied at UC Santa
Barbara, and the mathematical properties of the memory and applications
at large would be studied at RIACS. Raugh and Kanerva visited funding
agencies in Washington, D.C., (NASA, DARPA, ONR) to discuss the proposed
research.

3. PROFESSIONAL CONTACTS

Special effort was made to make the project known in the research
community and to establish working relations with the community. This
was done by participating in C-SAR activities and giving presentations
as listed later. In addition, important visits were made with the
following people:

Dr. James Albus, Chief of the Robot Systems Division at the
National Bureau of Standards. Albus’ Cerebellar Model Arithmetic
Computer (CMAGC) is in the first group of models described above, and
his BRAINS, BEHAVIOR, AND ROBOTICS (Peterborough, N.H.: BYTE Books of
McGraw-Hill, 1981) charts a new course for the study of artificial
intelligence.

Dr. Robert Hecht-Nielsen, director of the DARPA ADAPT program, and
Drs. Jack Smith and Allen Wu at the Rancho Carmel AI Center of TRW, San
Diego. They are developing the Mark IV computer for modeling artificial
neural nets and are now preparing to build a sparse, distributed memory
as well.

Professor David Rumelhart and Dr. Ronald Williams at the Institute
for Cognitive Science at UC San Diego. They (Rumelhart and McClelland)
have edited a major two-volume book on Parallel, Distributed Processing
(PDP) architectures, being published in 1986.

Professor Terrence Smith and his graduate students Gilbert Pitney
and Umesh Toylekar at the Computer Science Department of UC Santa
Barbara. They have programmed a simulator of the sparse, distributed
memory on an IMI Lisp machine, for the study of robot manipulatory
control with visual feedback.

The most fruitful cooperation has been with Professor Michael Flynn
and his graduate student, Bahram Ahanin, at the Electrical Engineering
Department at Stanford. It is leading into the development of a
prototype memory for the study of design issues and for application
studies. A preliminary hardware design was made by Mr. Ahanin and is

referred to in Table 1 as the ‘Prototype’.
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4. OTHER RESEARCH-RELATED ACTIVITIES

Kanerva attended a one-week workshop on the Intel iPSC Hypercube
computer at the Intel Scientific Computing Center in Beverton, Oregon,
in October 1985. RIACS has a 32-node iPSC computer, which will be
programmed to simulate the sparse, distributed memory.

Kanerva attended two meetings of the Consortium of Space Automation
and Robotics (C-SAR) at UC San Diego, one with Raugh and the other
alone. Both organizational and research issues were discussed in these
meetings. The sparse, distributed memory project could contribute to
C-SAR activities by helping to identify promising research topics and by
suggesting approaches to some of the selected topics. The memory model
can shed 1light on two issues in particular: How does an autonomous
system build an internal model of the world, and how might telerobots
be used as a way to develop more and more autonomous robots?

PUBLICATIONS

Kanerva, P. PARALLEL STRUCTURES IN HUMAN AND COMPUTER MEMORY (Rep. No.
TR-86.2). Moffett Field, CA: RIACS at NASA Ames, January 1986.

ABSTRACT. 1If we think of our experiences as being recorded
continuously on film, then human memory can be compared to a film
library that is indexed by the contents of the film strips stored in it.
Moreover, approximate retrieval cues suffice to retrieve information
stored in this library: We recognize a familiar person in a fuzzy
photograph or a familiar tune played on a strange instrument. This
paper is about how to construct a computer memory that would allow a
computer to recognize patterns and to recall sequences the way humans
do. Such a memory is remarkably similar in structure to a conventional
computer memory and also to the neural circuits in the cortex of the
cerebellum of the human brain. The paper concludes that the frame
problem of artificial intelligence could be solved by the use of such
a memory if we were able to encode information about the world properly.

PRESENTATIONS

Raugh, M. "Kanerva’s Sparse, Distributed Memory: A RIACS Project."
NASA Ames SETI Project, November 1985; Xerox PARC, January 1986.

Raugh, M. "An Introduction to RIACS and Kanerva’s Sparse, Distributed
Memory." Bolt, Beranec, and Newman, Cambridge, Mass., November
1985; Thinking Machines, Cambridge, Mass., November 1985;

KLA, Santa Clara, January 1986.

Kanerva, P. "The Organization of an Adaptive System Based on Sparse,
Distributed Memory." UC Santa Barbara Computer Science Colloquium,
February 1986.

Kanerva, P. "BRAINS, BEHAVIOR, AND ROBOTICS by James S. Albus."
Stanford CSLI TINLunch, March 1986.



